6TH ANNUAL CONFERENCE ON PLANNING RESEARCH

UNIVERSIDADE DE COIMBRA • 17TH MAY 2013

FCTUC DEPARTAMENTO DE ENGENHARIA CIVIL FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COMBRA

TURBO-ROUNDABOUT USE AND DESIGN

Session A4 – ROAD TRAFFIC MANAGEMENT

ANA BASTOS SILVA, University of Coimbra SÍLVIA SANTOS, University of Coimbra MARCO GASPAR, ISEL

BACKGROUND

Conventional roundabouts are excellent solutions for:

- Traffic regulation;
- Traffic calming;
- Urban regeneration and landscaping;
- Etc...

However, the international experience over the last years has been showing some functional problems in double-lane roundabouts:

- Lane changing on the roundabout disregarding lane markings;
- Cut the trajectory curvature;
- Achieve higher speeds.

ANA BASTOS SILVA	SÍLVIA SANTOS	MARCO GASPAR
UNIVERSITY OF COIMBRA	UNIVERSITY OF COIMBRA	ISEL

6TH ANNUAL CONFERENCE ON PLANNING RESEARCH

TURBO-ROUNDABOUT CONCEPT

The turbo-roundabout concept emerged in 1996 in the Netherlands.

- The first turbo-roundabout were installed in 2000, also in the Netherlands;
- Nowadays, more than 190 turbo-roundabouts are implemented in the Netherlands and some design guidelines have been published;
- No lane changing on the turbo-roundabout and near the entry and exit;
- Low driving speed near and through the roundabout.

ANA BASTOS SILVA	SÍLVIA SANTOS	MARCO GASPAR	6 TH ANNUAL CONFERENCE ON PLANNING RESEARCH
UNIVERSITY OF COIMBRA	UNIVERSITY OF COIMBRA	ISEL	UNIVERSIDADE DE COIMBRA • 17 TH MAY 2013

TURBO-ROUNDABOUT CONCEPT

- Reduction in the number of conflicts;
- Speed reduction along the entry, circulatory and exit zones (48 to 38 km/h);
- Low risk of side-by-side accidents (80% less accidents).

ANA BASTOS SILVASÍLVIA SANTOSMARCO GASPAR6TH ANNUAL CONFERENCE ON PLANNING RESEARCHUNIVERSITY OF COIMBRAUNIVERSITY OF COIMBRAISELUNIVERSIDADE DE COIMBRA • 17TH MAY 2013

TURBO-ROUNDABOUT CONCEPT

Some authors concluded that turbo-roundabouts offer better capacity than conventional roundabouts of similar size.

However, these conclusions are not consensual in the scientific community – recent research disregards these conclusions.

For the standard layout, the capacity in turbo-roundabouts can be slightly above the capacity in conventional double lane roundabouts, when:

- Increases the number of right turns on the secondary lane;
- Increases the go-ahead movement in the dominant flow;
- There is an equilibrated traffic distribution in all arms and directions of the turbo-roundabout.

GENERAL DESIGN GUIDELINES

Geometric design

The geometrical shape of a turbo-roundabouts is given by the simultaneous development of two nested spirals.

ANA BASTOS SILVA	SÍLVIA SANTOS	MARCO GASPAR	6 TH ANNUAL CONFERENCE ON PLANNING RESEARCH
UNIVERSITY OF COIMBRA	UNIVERSITY OF COIMBRA	ISEL	UNIVERSIDADE DE COIMBRA • 17 TH MAY 2013

GENERAL DESIGN GUIDELINES

Geometric design

The geometrical design process begin with the definition of the basic dimensions, such as the inner radius of the inside lane (R_1), the width of the traffic lanes (L_i and L_e) and the width of the lane divider (L_s).

Element	Width (m)	
R ₁	12.00	
R ₂	12.00+5.15=17.15	R ₂ = R ₁ +L _i (average)
R ₃	17.15+0.30=17.45	$R_3 = R_2 + L_s$
R ₄	17.45+5.00=22.45	$R_4 = R_3 + L_e$

ANA BASTOS SILVA

SÍLVIA SANTOS

MARCO GASPAR

6TH ANNUAL CONFERENCE ON PLANNING RESEARCH

UNIVERSITY OF COIMBRA UNIVERSITY OF COIMBRA

TURBO-ROUNDABOUT USE AND DESIGN

GENERAL DESIGN GUIDELINES

Signing

ANA BASTOS SILVA

SÍLVIA SANTOS

MARCO GASPAR

6TH ANNUAL CONFERENCE ON PLANNING RESEARCH

UNIVERSITY OF COIMBRA

UNIVERSITY OF COIMBRA ISEL

ANA BASTOS SILVA

SÍLVIA SANTOS

MARCO GASPAR

6TH ANNUAL CONFERENCE ON PLANNING RESEARCH

UNIVERSITY OF COIMBRA UNIVERSITY OF COIMBRA ISEL

CASE STUDY

Baden-Powell Square, Lisbon

ANA	BASTOS S	SILVA	

MARCO GASPAR

6TH ANNUAL CONFERENCE ON PLANNING RESEARCH

COIMBRA UNIVERSITY OF COIMBRA ISEL

SÍLVIA SANTOS

CASE STUDY

Baden-Powell Square, Lisbon

Entry capacity	
----------------	--

Degree of saturation

ANA BASTOS SILVA	SÍLVIA SANTOS	MARCO GASPAR	6 TH ANNUAL CONFERENCE ON PLANNING RESEARCH
UNIVERSITY OF COIMBRA	UNIVERSITY OF COIMBRA	ISEL	UNIVERSIDADE DE COIMBRA • 17 TH MAY 2013

CONCLUSIONS

- Compared to the conventional double-lane roundabout, the turboroundabout has a reduction of the number of conflict points and the deflexion level control justify the reduction of accidents in 80% as some literature shows.
- The performance in terms of capacity is not consensual. However, in some specific conditions the turbo-roundabout solution can be extremely useful, putting together safety and capacity benefits.
- The applicability of the concept was tested by turning a real roundabout into a turbo-roundabout. The intervention tends to be a positive change resulting in speed reductions and in additional free space.
- At the moment the construction of a real turbo-roundabout in Portugal is being considered and a more extensive study is necessary in order to improve the geometric construction knowledge.

6TH ANNUAL CONFERENCE ON PLANNING RESEARCH

UNIVERSIDADE DE COIMBRA • 17TH MAY 2013

FCTUC DEPARTAMENTO DE ENGENHARIA CIVIL FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COMBRA

TURBO-ROUNDABOUT USE AND DESIGN

Session A4 – ROAD TRAFFIC MANAGEMENT

ANA BASTOS SILVA, University of Coimbra SÍLVIA SANTOS, University of Coimbra MARCO GASPAR, ISEL

